Temporal filtering properties of midbrain neurons in an electric fish: implications for the function of dendritic spines.

نویسندگان

  • G J Rose
  • S J Call
چکیده

Electrosensory neurons in the torus semicircularis (midbrain) of the weakly electric fish Eigenmannia vary considerably in their dendritic structure and responses to modulations of the amplitude of electric organ discharges. We investigated possible relations between these properties by recording intracellularly and labeling individual neurons while modulating stimulus amplitude over rates of approximately 2-20 Hz. Morphologically distinct cell types generally differed in their responses to these stimuli. The amplitude envelope of the stimulus was nicely reflected in fluctuations of the membrane potential of heavily spined neurons. The amplitude of these stimulus-related depolarizations decreased markedly as the stimulus modulation rate was increased. For aspiny or sparsely spined neurons, however, the amplitude of stimulus-related depolarizations either increased or remained constant over this range of modulation rates. In these cells, the amplitude envelope of the stimulus was not well represented in the membrane potential. Instead, fast EPSPs were observed that varied in number over time in accordance with the amplitude envelope of the stimulus. Aspiny neurons in the tectum also coded the amplitude envelope of stimuli with poor fidelity. The amplitude of stimulus-related depolarizations, however, decreased as the rate of modulation of stimulus amplitude was increased, consistent with the notion that tectal neurons receive afferent input from the spiny toral neurons. Spiny neurons appear, therefore, to act as low-pass filters of temporal information in sensory signals. Aspiny cells, however, code high temporal frequencies. These data support the hypothesis that dendritic spines contribute to the low-pass filtering of inputs to neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo.

This study examined the contributions of passive and active membrane properties to the temporal selectivities of electrosensory neurons in vivo. The intracellular responses to time-varying (2-30 Hz) electrosensory stimulation and current injection of 27 neurons in the midbrain of the weakly electric fish Eigenmannia were recorded. Each neuron was filled with biocytin to reveal its anatomy. Neur...

متن کامل

A diversity of synaptic filters are created by temporal summation of excitation and inhibition.

Temporal filtering is a fundamental operation of nervous systems. In peripheral sensory systems, the temporal pattern of spiking activity can encode various stimulus qualities, and temporal filtering allows postsynaptic neurons to detect behaviorally relevant stimulus features from these spike trains. Intrinsic excitability, short-term synaptic plasticity, and voltage-dependent dendritic conduc...

متن کامل

Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

UNLABELLED In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between s...

متن کامل

A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals

Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbr...

متن کامل

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 1993